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I. INTRODUCTION 

 Study of mixed convection in the channel has been to the focus of lot of investigation during the last 

three decades because of the multiple applications in which it is involved. These includes cooling of electronic 

equipment, heat exchangers, chemical processing equipment, gas-cooled nuclear reactors and others. Tao [1] 

analyzed the laminar fully developed mixed convection flow in a vertical parallel-plate channel with uniform 

wall temperatures. Aung and Worku [2, 3] discussed the theory of combined free and forced convection in a 

vertical channel with flow reversal conditions for both developing and fully developed flows. The case of 

developing mixed convection flow in ducts with asymmetric wall heat fluxes was analyzed by the same authors 

[4]. Recently, Prathap Kumar et al. [5] and Umavathi et al. [6, 7]   studied the mixed convective flow and heat 

transfer in a vertical channel for immiscible viscous fluids.  
 

 The rate of heat transfer in a vertical channel could be enhanced by using special inserts. Heat transfer 

in such partially divided enclosures has received attention previously due to its applications to design energy 

efficient buildings and reduction of heat loss from flat plate solar collectors. When the channel is divided into 

several passages by means of plane baffles, as usually occurs in heat exchangers or electronic equipment, it is 

quite possible to enhance the heat transfer performance between the walls and fluid by the adjustments of each 

baffle position and strengths of the separate flow streams. In such configurations, perfectly conductive and thin 

baffles may be used to avoid significant increase of the transverse thermal resistance. For a number of fluids, the 

density-temperature relation exhibits an extreme. Because the coefficient of thermal expansion changes signs at 

this extremum. Simple linear relations for density as a function of temperature are inadequate near the 

extremum. Dutta and Dutta [8] first reported the enhancement of heat transfer with inclined solid and perforated 
baffles. Later Dutta and Hossian [9] did the experimental study to analyze the local heat transfer characteristics 

in a rectangular channel with inclined solid and perforated baffles. Salah El-Din [10, 11] published a series of 

papers on mixed convection in a vertical channel by introducing a perfectly conducting baffle.  

ABSTRACT 
 A new analytical solution is introduced for the effect of chemical reaction on mixed convective 

heat and mass transfer in a vertical double passage channel. The vertical channel is divided into two 

passages (by means of a baffle) for two separate flow streams. Each stream has its own individual 

velocity, temperature and concentration fields. After placing the baffle the fluid is concentrated in one 

of the passage. Approximate analytical solutions are found for the coupled nonlinear ordinary 

differential equations using regular perturbation method (PM) and Differential Transform method 

(DTM). The validity of the Differential Transform series solutions are verified with the regular 

perturbation method. The velocity, temperature and concentration solutions are obtained and 

discussed for various physical parameters such as thermal Grashoff number, mass Grashoff number, 

Brinkman number and chemical reaction parameter at different positions of the baffle. It is found that 
the thermal Grashoff number, mass Grashoff number, Brinkman number enhances the flow whereas 

chemical reaction parameter reduces the flow at all baffle positions. It is also found that as Brinkman 

number increases the DTM and PM show more error. 
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 Mousavi and Hooman [12] studied numerically the fluid flow and heat transfer in the entrance region 

of a two dimensional horizontal channel with isothermal walls and with staggered baffles. Heat transfer 
enhancement in a heat exchanger tube by installing a baffle was reported by Nasiruddin and Siddiqui [13]. They 

found that the average Nusselt number for the two baffles case is 20% higher than the one baffle case and 82% 

higher than the no baffle case. Recently, Prathap Kumar et al. [14, 15] studied the flow characteristics of fully 

developed free convection flow of a Walters fluid (Model B’) in a vertical channel divided into two passages. 

Umavathi [16] analyzed the effect of the presence of a thin perfectly conductive baffle on the fully developed 

laminar mixed convection in a vertical channel containing micropolar fluid. 

 

Combining heat and mass transfer problems with a chemical reaction are of importance in many 

processes and have, therefore, received a considerable amount of attention in recent years. In such processes as 

drying, energy transfer in a wet cooling tower, and the flow in a desert cooler, heat and mass transfer occurs 

simultaneously. Mixed convection processes involving the combined mechanisms are also encountered in many 
natural processes, such as evaporation, condensation, and agricultural drying, and in many industrial 

applications, such as the curing of plastics and the manufacture of pulp-insulated cables [17]. In many chemical 

engineering processes, chemical reactions take place between a foreign mass and the working fluid which 

moves due to the stretch of a surface.  

 

The order of the chemical reactions depends on several factors. One of the simplest chemical reactions 

is the first-order reaction in which the rate of the reaction is directly proportional to the species concentration. 

Chamkha [18] studied the analytical solutions for heat and mass transfer by the laminar flow of a Newtonian, 

viscous, electrically conducting and heat generating/absorbing fluid on a continuously moving vertical 

permeable surface in the presence of a magnetic field and the first-order chemical reaction. Muthucumaraswamy 

and Ganesan [19] studied the numerical solution for the transient natural convection flow of an incompressible 

viscous fluid past an impulsively started semi-infinite isothermal vertical plate with the mass diffusion, taking 
into account a homogeneous chemical reaction of the first order. 

 

The coupled nonlinear ordinary differential equations governing the flow are solved using regular 

perturbation method which is the oldest method used by many researchers. In this paper a new method known as 

Differential Transform method is applied to find the analytical solution. The main advantage of DTM is that it 

can be applied directly to nonlinear differential equations without requiring linearization, discritization, or 

perturbation. This method is well addressed in [20-24]. Recently Umavathi et al. [25] solved the coupled 

nonlinear equations governing the flow for magnetoconvection in a vertical channel for open and short circuits 

usng Differential Transform method. The aim of this paper is to investigate effect of first order chemical 

reaction of viscous fluid in a vertical channel in the presence of a thin conducting baffle. After inserting the 

baffle, the fluid in stream-1 is concentrated. Analytical solutions are found using PM and using DTM. 
 
 

II. MATHEMATICAL FORMULATION 
 Consider a steady, two-dimensional laminar fully developed free convection flow in an open ended 

vertical channel filled with purely viscous fluid. The X-axis is taken vertically upward, and parallel to the 

direction of buoyancy, and the Y-axis is normal to it. Walls are maintained at a constant temperature and the 

fluid properties are assumed to be constant. The channel is divided into two passages by means of thin, perfectly 

conducting plane baffle and each stream will have its own pressure gradient and hence the velocity will be 

individual in each stream. 



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 28 

 
 

The governing equations for velocity, temperature and concentrations are 
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subject to the boundary and interface conditions on velocity, temperature and concentration as 
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Introducing the following non-dimensional variables, 
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Figure 1. Physical configuration. 
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 The momentum, energy and concentration equations corresponding to stream-I and stream-II become 
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subject to the boundary conditions, 
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III. SOLUTIONS 
 The exact solution for concentration distribution is found using Eq. (10) and is given by 

   1 2
B C o s h y B S in h y                          (14) 

 

3.1 Perturbation Method 

 Equations (8), (9), (11) and (12) are coupled non-linear ordinary differential equations. Approximate 

solutions can be found by using the regular perturbation method and Differential Transform method. The 

perturbation parameter is considered as Brinkman number B r . Adopting this method, solutions for velocity and 

temperature are assumed in the form 
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where the subscript 1i  and 2  represents stream-I and stream-II respectively. 

                                                                                    

Substituting Eqs. (15) and (16) into Eqs. (8), (9), (11) and (12) and equating the coefficients of like 

power of B r  to zero and one, we obtain the zeroth and first order equations as 
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First order equations 
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The corresponding zeroth order boundary conditions reduces to  
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The corresponding first order boundary conditions reduces to  
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The solutions of zeroth and first order equations (17) to (24) using the boundary  conditions as given in 

Eqs. (25) and (26) are 
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First order solutions 
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3.2 Basic concepts of the differential transform method 

 The analytical solutions obtained in Section 3.1 are valid only for small values of Brinkman number 

B r . In many practical problems mentioned earlier, the values of B r  are usually large. In that case analytical 

solutions are difficult, and hence we resort to semi-numerical-analytical method known as Differential 

Transform method (DTM). The general concept of DTM is explained here: The kth differential transformation of 

an analytical function  F k  is defined as (Zhou [20]) 
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and the inverse differential transformation is given by 
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Combining Eqs. (35) and (36), we obtain 
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 From Eqs. (35)–(37), it can be seen that the differential transformation method is derived from Taylor’s 

series expansion. In real applications the sum    0
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where the value of n  depends on the convergence requirement in real applications and  F k  is the 

differential transform of  f  . Table 1 lists the basic mathematics operations frequently used in the following 

analysis. 
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Table 1 The operations for the one-dimensional differential transform method. 
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Taking differential transform of Eqs. (8), (9), (11) and (12), one can obtain the transformed equations as    
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The following are the transformed initial conditions 
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Using the boundary condition (13), we can evaluate 
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IV. RESULTS AND DISCUSSIONS 
 The objective of the present study is to understand the characteristics of mixed convection of a viscous 

fluid in a vertical double passage channel in the presence of chemical reaction. The solutions are found using 

perturbation method and Differential Transformation method. The physical parameters such thermal Grashoff 

number 
T

G R , mass Grashoff number 
C

G R , Brinkman number B r (or perturbation parameter) and chemical 

reaction parameter  , are fixed as 5, 5, 0.1,  and 0.5 respectively, for all the graphs except the varying one. The 

effect of these parameters on velocity, temperature and concentration are shown in Figs. 2 – 10.    The effect of 

thermal Grashoff number 
T

G R  (ratio of Grashoff number to Reynolds number) on the velocity and temperature 

is shown in Figs. 2a,b,c and Figs. 3a,b,c at all three different baffle positions (i.e. * 0 .8y   , 0.0 and 0.8). As 

the thermal Grashoff number increases, the velocity and temperature increases at all the baffle position whereas 

the maximum velocity field is observed in the wider stream. It is also observed form Figs. 3a,b,c that the 

temperature distribution is more effective near the left wall when compared to right wall. Further it is well-

known that since Grashoff number is the ratio of buoyancy force to viscous force, increase in Grashoff number 

is to increase the buoyancy force and hence increases the concentration also. Therefore as the thermal 

Grashoff number increases velocity and temperature increases at all baffle position in both the streams.  The 

effect of mass Gerashof number 
C

G R  (ratio of modified Grashoff number to Reynolds number) is shown in 

Figs. 4a,b,c for velocity field and in Figs. 5a,b,c for the temperature field. Here also the effect of 
C

G R  is to 

increase the velocity and temperature field in both the streams. It is seen from Figs. 4a and 5a ( * 0 .8y   ) that 

the effect of 
C

G R  on the velocity and temperature fields is not effective whereas when the baffle position is at 

* 0 .0y   and 0.8 the flow field is enhanced as 
C

G R  increases. The similar result is also observed by 

Fasogbon [26] for irregular channel.    

 The effect of Brinkman number B r  on the velocity and temperature fields are shown in Figs. 6a,b,c 

and Figs. 7a,b,c respectively. As the Brinkman number increases, both the velocity and temperature increases in 

both the streams at all baffle positions. One can see from temperature equation that increase in Brinkman 

number increases the viscous dissipation and hence the temperature increases, which intern influences the 

velocity and temperature.  The effect of first order chemical reaction parameter  , on the velocity, 

temperature and concentration fields is shown in Figs. 8a,b,c, Figs. 9a,b,c and Figs. 10a,b,c respectively. As   

increases the velocity and temperature decreases in stream-I, and remains invariant in stream-II when the baffle 

position * 0 .8y   . But when the baffle position is at * 0 & 0 .8y   the effect of   is more effective in 

stream –I and less effective in stream –II. This is because the fluid is concentrated in stream-I only. The effect of 

chemical reaction parameter   is to decrease the concentration distribution as seen in Figs. 10a,b,c, which is 

the similar result obtained by Srinivas and Muturajan [27] for mixed convective flow in a vertical channel. It is 

observed from Tables 2a, 3a and 4a that results of DTM and PM agree well in the absence of Brinkman number 

at all the baffle positions. For large values of Brinkman number  0B r  , DTM and PM solutions show 

difference as seen in Tables 2(b,c) to 4(b,c). It is also observed from these tables that the error of DTM and PM 

is very less in smaller stream when compared to bigger stream at all baffle position for 0B r  . 

 

V. CONCLUSION 
 The effect of first order chemical reaction in a vertical double passage channel filled with purely 

viscous fluid was investigated. The solutions of the governing equations and the associated boundary conditions 

have been obtained by using regular perturbation method and differential transform method. Main findings are 

summarized as follows: 

 

[1] Increasing thermal Grashoff number, mass Grashoff number and Brinkman number increases the velocity 

and temperature in both the streams at all different baffle position.  

[2] Increase in the chemical reaction parameter suppresses the velocity and temperate in stream-I and remains 
invariant in stream-II. 

[3] The use of baffle in the flow channel resulted in the heat transfer enhancement as high as compared to the 

heat transfer in a channel without baffle. 

[4] Chemical reaction parameter was to decrease the flow field. 

[5] An excellent agreement was observed with the results of DTM and PM for small values of Brinkman 

number. 
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NOMENCLATURE 

Br        Brinkman number 

2

1 1
u

K T

 

 
 
 

 

1
C        the Concentration in Stream-I  

0
C        reference concentration 

p
C        specific heat at constant pressure 

p
c        dimensionless specific heat at constant pressure  

D         diffusion coefficients 

g          acceleration due to gravity 
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G r        Grashoff number

3

2

h g T



 

 
 

  

c
G    modified Grashoff Number 

3

2

g c C h



 

 
   

T
G R   thermal Grashoff number  Re/Gr  

C
G R   mass Grashof number  Re/Gc  

h      channel width  
*

h       width of passage  

k        thermal conductivity of fluid  

p   non-dimensional Pressure Gradient  

2

1

( )
h p

XU 




 

R e   Reynolds number 1
( )
U h


 

1 2
,T T   dimensional temperature distributions 

1 2

,
w w

T T  temperatures of the boundaries 

1
U        reference velocity 

1 2
,U U   dimensional velocity distributions 

1 2
,u u    non dimensional Velocities in Stream-I,    Stream-II 

*
y        baffle position  

 

 GREEK SYMBOLS 

         chemical reaction parameters 

 

T
        coefficients of thermal expansion 

C
     coefficients of concentration expansion 

,T C  difference in Temperatures & Concentration 

 
  perturbation Parameter 

i
    non-dimensional temperature 2

1 2

i W

W W

T T

T T

 

 
 
 

 

          kinematics viscosity 

         non-dimensional concentrations  

  density 

   viscosity 

 

SUBSCRIPTS 

 

i refer quantities for the fluids in stream-I and stream-II, respectively. 

 

Acknowledgment 
The authors thank UGC-New Delhi for the financial support under UGC-Major Research Project.   



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 36 

-1.0-0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

-1.0-0.50.0 0.5 1.0
0

4

8

12

16

20

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

(a)

Br=0.1

GR
c
=5



p=-5

n=1

15

10

5

GR
T
=1

u

y (c)

15

10

5

GR
T
=1

u

y

Fig.2: velocity distribution for different values of thermal Grashof number GR
T
 

at (a) y*=-0.8   (b)y*=0.0  (c) y*=0.8 

(b)

15

10

5

GR
T
=1

u

y

-1.0 -0.5 0.0 0.5 1.0
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Br=0.1

p=-5

n=1



GR
c
=5

15

10

5

GR
T
=1

(a)



y

15

10

5

GR
T
=1

(b)



y

Figu.3: Temperature profile for different values of ratio of Grashof number  to 

                Reynolds number GR
T
 at (a)y*=0.8 (b)y*=0 (c)y*=0.8

15

10

5

GR
T
=1

(c)



y

 



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 37 

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

14

16

18

uu

(a)

GR
c
=1, 5, 10, 15

u

y (b)

Br=0.1

p=-5

GR
T
=5

n=1



15

10

5

GR
c
=1

y

Fig.4: Velocity profile for different values ofratio of modified Grashoff number to

                         Reynolds number GR
C
 at (a)y*=-0.8 (b)y*=0 (c)y*=0.8

(c)

15

10

5

GR
c
=1

y

 

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

GR
c
=1, 5, 10, 15

(a)



y

15

10

5

GR
c
=1

(b)

Br=0.1



GR
T
=5

p=-5

n=1



y

Fig.5: Temperature profile for different values of ratio of modified Grashof number to

                Reynolds number GR
C
  at (a)y*=-0.8 (b)y*=0 (c)y*=0.8

15

10

5

GR
c
=1

(c)



y

 



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 38 

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.5 0.0 0.5 1.0
0

4

8

12

16

20

24

28

(a)

1

0.5

0.1

Br=0

u

y (b)

p=-5

GR
c
=5

GR
T
=5

n=1



1

0.5

0.1

Br=0

u

y

Fig.6: Velocity for different values of Brinkman number Br

                              (a)y*=-0.8 (b)y*=0 (c)y*=0.8

(c)

1

0.5

0.1

Br=0

u

y

 

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

14

1

0.5

0.1

Br=0

(a)



y

1

0.5

0.1

Br=0

(b)

GR
c
=5

GR
T
=5

p=-5

n=1





y

Fig.7: Temperature profile for different values of Brinkman number Br  

                              at (a) y*=-0.8 (b)y*=0 (c) y*=0.8

1

0.5

0.1

Br=0

(c)



y

 



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 39 

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

7

8

Fig.8: Velocity profile for different values of chemical reaction parameter  

                                         at (a) y*=-0.8 (b)y*=0 (c) y*=0.8



(a)

u

y

=0.1, 0.5, 1, 1.5

(b)



GR
c
=5

GR
T
=5

p=-5

n=1

u

y



(c)

u

y



 

 



 
 

 

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0



(a)



y

=0.1, 0.5, 1, 1.5

(b)



GR
c
=5

GR
T
=5

p=-5

n=1



y

=0.1, 0.5, 1, 1.5

Fig.9: Temperature profile for different values of chemical reaction parameter  

                                         at (a) y*=-0.8 (b)y*=0 (c) y*=0.8

(c)



y

 



Perturbation Technique And Differential… 

||Issn 2250-3005 ||                                                   ||October||2013||                                                                                 Page 40 

-1.00-0.95-0.90-0.85-0.80

0.988

0.990

0.992

0.994

0.996

0.998

1.000

-0.8 -0.4 0.0

0.76

0.80

0.84

0.88

0.92

0.96

1.00

-0.8 -0.4 0.0 0.4 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1.0

GR
c
=5

GR
T
=5



p= -5

n
1
=1

n
2
=1

(a)

1.5

1

0.5

0.1



y

1.5

1

0.5

0.1

(b)



y

Figure10.Concentration profile for different values of chemical reaction parameter  

                                         at (a) y*=-0.8 (b)y*=0 (c) y*=0.8

1.5

1

0.5

0.1

(c)



y

 

 

Table 2a Comparison of velocity and temperature with 0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .0y  . 

 
 Velocity Temperature 

y  DTM PM 
Error 

DTM PM 
Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.75 1.266461 1.266461 0.0000 0.875000 0.875000 0.0000 

-0.5 1.659656 1.659656 0.0000 0.750000 0.750000 0.0000 

-0.25 1.227398 1.227398 0.0000 0.625000 0.625000 0.0000 

0 0 0 0.0000 0.500000 0.500000 0.0000 

0.25 0.605469 0.605469 0.0000 0.375000 0.375000 0.0000 

0.5 0.781250 0.781250 0.0000 0.250000 0.250000 0.0000 

0.75 0.566406 0.566406 0.0000 0.125000 0.125000 0.0000 

1 0 0 0.0000 0 0 0.0000 

 

Table 2b Comparison of velocity and temperature with 05.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .0y  . 

 
 Velocity Temperature 

y  DTM PM 
Error 

DTM PM 
Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.75 1.339968 1.329565 0.0104 0.989529 0.973754 0.0158 

-0.5 1.771965 1.755951 0.0160 0.933166 0.907116 0.0261 

-0.25 1.321337 1.307845 0.0135 0.870308 0.834778 0.0355 

0 0 0 0.0000 0.761836 0.722594 0.0392 

0.25 0.682521 0.670711 0.0118 0.583393 0.551573 0.0318 

0.5 0.870491 0.856765 0.0137 0.393647 0.371510 0.0221 

0.75 0.622964 0.614236 0.0087 0.202259 0.190149 0.0121 

1 0 0 0.0000 0 0 0.0000 
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Table 2c Comparison of velocity and temperature with 15.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .0y  . 

 Velocity Temperature 

y  DTM PM 
Error 

DTM PM 
Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.75 1.651154 1.455775 0.1954 1.465379 1.171263 0.2941 

-0.5 2.249870 1.948541 0.3013 1.711319 1.221349 0.4900 

-0.25 1.723060 1.468738 0.2543 1.925328 1.254333 0.6710 

0 0 0 0.0000 1.915429 1.167783 0.7476 

0.25 1.027983 0.801196 0.2268 1.514892 0.904720 0.6102 

0.5 1.271710 1.007795 0.2639 1.040516 0.614531 0.4260 

0.75 0.877917 0.709895 0.1680 0.554797 0.320447 0.2344 

1 0 0 0.0000 0 0 0.0000 

 

Table 3a Comparison of velocity and temperature with 0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y   . 

 Velocity Temperature 

y  DTM PM 
Error 

DTM PM 
Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.95 0.055395 0.055395 0.0000 0.975000 0.975000 0.0000 

-0.9 0.073646 0.073646 0.0000 0.950000 0.950000 0.0000 

-0.85 0.055082 0.055082 0.0000 0.925000 0.925000 0.0000 

-0.8 0 0 0.0000 0.900000 0.900000 0.0000 

-0.5 1.743750 1.743750 0.0000 0.750000 0.750000 0.0000 

-0.2 2.700000 2.700000 0.0000 0.600000 0.600000 0.0000 

0.1 2.936250 2.936250 0.0000 0.450000 0.450000 0.0000 

0.4 2.520000 2.520000 0.0000 0.300000 0.300000 0.0000 

0.7 1.518750 1.518750 0.0000 0.150000 0.150000 0.0000 

1 0 0 0.0000 0 0 0.0000 

 

Table 3b Comparison of velocity and temperature with 05.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y   . 

 

 Velocity Temperature 
y  DTM PM Error DTM PM Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.95 0.056795 0.056380 0.0004 1.019848 1.006548 0.0133 

-0.9 0.075886 0.075222 0.0007 1.039612 1.013017 0.0266 

-0.85 0.057042 0.056460 0.0006 1.059364 1.019475 0.0399 

-0.8 0 0 0.0000 1.079032 1.025854 0.0532 

-0.5 2.076642 1.976262 0.1004 1.070430 0.974183 0.0962 

-0.2 3.226545 3.067590 0.1590 0.925078 0.826975 0.0981 

0.1 3.511194 3.337492 0.1737 0.748205 0.658004 0.0902 

0.4 3.009255 2.861363 0.1479 0.565508 0.485024 0.0805 

0.7 1.804303 1.717982 0.0863 0.341631 0.283674 0.0580 

1 0 0 0.0000 0 0 0.0000 

 

Table 3c Comparison of velocity and temperature with 09.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y   . 

 Velocity Temperature 
y  DTM PM Error DTM PM Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.95 0.061213 0.057167 0.0040 1.160698 1.031787 0.1289 

-0.9 0.082935 0.076482 0.0065 1.320672 1.063431 0.2572 

-0.85 0.063199 0.057563 0.0056 1.480419 1.095055 0.3854 

-0.8 0 0 0.0000 1.639913 1.126537 0.5134 

-0.5 3.134164 2.162271 0.9719 2.084440 1.153530 0.9309 

-0.2 4.901119 3.361663 1.5395 1.958644 1.008556 0.9501 

0.1 5.341092 3.658485 1.6826 1.698429 0.824406 0.8740 

0.4 4.567218 3.134453 1.4328 1.413275 0.633044 0.7802 

0.7 2.713644 1.877367 0.8363 0.952144 0.390614 0.5615 

1 0 0 0.0000 0 0 0.0000 
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Table 4a Comparison of velocity and temperature with 0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y  . 

 Velocity Temperature 
y  DTM PM Error DTM PM Error 

-1 0 0 0.0000 1.000000 0.850000 0.0000 

-0.7 2.720194 2.720194 0.0000 0.700000 0.550000 0.0000 

-0.4 4.232842 4.232842 0.0000 0.400000 0.250000 0.0000 

-0.1 4.649777 4.649777 0.0000 0.100000 0.100000 0.0000 

0.2 4.052842 4.052842 0.0000 0.075000 0.050000 0.0000 

0.5 2.495194 2.495194 0.0000 0.025000 0 0.0000 

0.8 0 0 0.0000 1.000000 0.850000 0.0000 

0.85 0.019844 0.019844 0.0000 0.400000 0.250000 0.0000 

0.9 0.026250 0.026250 0.0000 0.100000 0.100000 0.0000 

0.95 0.019531 0.019531 0.0000 0.075000 0.050000 0.0000 

1 0 0 0.0000 0.025000 0 0.0000 

Table 4b Comparison of velocity and temperature with 01.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y  . 

 

 

 Velocity Temperature 
y  DTM PM Error DTM PM Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.7 2.825637 2.816608 0.0090 0.924245 0.918020 0.0062 

-0.4 4.412157 4.396750 0.0154 0.797661 0.789269 0.0084 

-0.1 4.859428 4.841378 0.0181 0.658724 0.649363 0.0094 

0.2 4.243934 4.227453 0.0165 0.517827 0.507653 0.0102 

0.5 2.615207 2.604832 0.0104 0.362559 0.352732 0.0098 

0.8 0 0 0.0000 0.160579 0.155260 0.0053 

0.8 0 0 0.0000 0.160579 0.155260 0.0053 

0.85 0.020506 0.020448 0.0001 0.120437 0.116447 0.0040 

0.9 0.027007 0.026941 0.0001 0.080292 0.077632 0.0027 

0.95 0.020005 0.019963 0.0000 0.040147 0.038817 0.0013 

1 0 0 0.0000 0 0 0.0000 

 

Table 4c Comparison of velocity and temperature with 05.0Br , 5
T

G R  , 5
C

G R  , 5p    and * 0 .8y  . 

 

 Velocity Temperature 
y  DTM PM Error DTM PM Error 

-1 0 0 0.0000 1.000000 1.000000 0.0000 

-0.7 3.707230 3.202265 0.5050 1.536854 1.190102 0.3468 

-0.4 5.914596 5.052384 0.8622 1.616169 1.146343 0.4698 

-0.1 6.618204 5.607785 1.0104 1.571084 1.046814 0.5243 

0.2 5.848729 4.925897 0.9228 1.507863 0.938267 0.5696 

0.5 3.624481 3.043386 0.5811 1.314728 0.763661 0.5511 

0.8 0 0 0.0000 0.674938 0.376298 0.2986 

0.8 0 0 0.0000 0.674938 0.376298 0.2986 

0.85 0.026132 0.022866 0.0033 0.506220 0.282234 0.2240 

0.9 0.033437 0.029704 0.0037 0.337487 0.188161 0.1493 

0.95 0.024023 0.021690 0.0023 0.168751 0.094085 0.0747 

1 0 0 0.0000 0 0 0.0000 
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